Nano Micro Macro 2015: Selected Student Projects

Nano | Micro | Macro, now co-taught by faculty from the GSD and from SEAS, and cross-listed between the GSD and SEAS, continues to be an intensely interdisciplinary, project based setting in which students from both schools learn to navigate the space between science and design through a collaborative group design project. The course provides an interdisciplinary setting of material science and architectural/product design where a sequence of lectures, readings, workshops, lab exercises, design challenges and design charrettes provides a reference and framework that guides students towards understanding and mastering the innovation process itself

Professor: Martin Bechthold (GSD), James Weaver (Wyss Insitute)

Teaching Fellow: Jonathan Grinham


Project Name: Hyxel

Group:Tiffany Cheng, Santiago Serna, Gabriele Librandi, Juan Pablo Ugarte

HYXEL is a 3D projection display system comprised of a voxel field of hydrogels and projector(s). The technology has advantages over more complex volumetric displays which rely on the laminar flow of fog. By embedding ferrous material within the hydrogels a magnetic field can be used to control and activate selected pixels.


Project Name: Thermo-Responsive Fabric

Group: Ji Hyuk Choi, Taehyun Jeon, Namju Lee

This fabric design responds to thermal changes by varying the scale of micro-scale porosities. The system consists of two separate membranes, one dimensionally stable and the other one swelling in response to moisture. As the second membrane swells, cavities within the surface get smaller to respond to outside thermal conditions.
Core Technology: Thermo-responsive Swelling
Material & Process:This experimentation is mainly done using 3d printing of swelling materials. The starting point were basic shapes for measuring the capacity of swelling, leading to more complex structures that maximize transformation by catalysis. A computational simulation model was created based on the experimentally measured data.

Video


Project Name: HydroPanel

Group: Andrew Kim, Hae Young Kim, Hyeji Yang

Considering hydrogel as a new architectural material, HydroPanel studies the actuation of environmentally responsive façade systems. Current technology for kinetic façade systems relies heavily on a mechanical paradigm based on actuator that take up a lot of space and involve intricate mechanical systems to operate. By utilizing the material properties of hydrogel, HydroPanels can operate through changes in humidity level, reducing the need for failure-prone mechanisms.


Project Name: RheoTile

Group: Aziz Barber, Akshay Goyal, Myrna Ayoub

Rheotile is a dynamic building system panel that enables homeostasis using water responsive modules for climatic response. The novel panels manage light, air flow, cooling, and dehumidification. Inspired by the Namib Beetle, the component has a condensation screen head made of bohometized aluminum [hydrophobic] with custom designed surface bumps and water flow channels [hydrophilic]. The water generated is used to actuate a multi-material 3D printed fin where the actuation mechanism is based on triggering swell-able hinges. The product is an easy modular system with no mechanized parts and a quick assembly that is both scalable and low maintenance.


Project Name: Acoustically Tunable Tiles

Group: Palak Gadodia, Alkistis Mavroedi, Roma Patel, Fiorella Vargas.

Mechanical instabilities in periodic porous elastic structures may  lead to the formation of homogeneous patterns, opening avenues for a wide range of applications that are related to the geometry of the system. This study focuses on an elastomeric porous structure comprising of a triangular array of circular holes. The project shows that by controlling the loading direction, multiple pattern transformations can be induced through buckling. These different pattern transformations can be exploited to design materials with highly tunable properties.


Project Name: HydroWall

Group: Peregrine Badger, Bianca Datta, Shreejay Tuladhar

HydroWall is a modular, self-actuated, durable, flood-defense mechanism. It uses a hydrogel base for columns that swells with incoming floods to lift the protective barrier to prevent further flooding. The system can be covered with grass or other landscaping elements to ensure that a property is subtly but attractively protected. It is an automatic, self-deploying, convenient alternative to sandbags and floodgates involving no labor in the case of flooding.


 

MaP+S / ITE Research Pavillion: Structural Ceramics
Ceramic
MaP+S / ITE Research Pavillion: Structural Ceramics
Brick Geometries: 5-Axis Additive Manufacturing for Architecture
MArch | Thesis
Ceramic, Design Robotics
Brick Geometries: 5-Axis Additive Manufacturing for Architecture
Nano Micro Macro 2016: Selected Student Projects
ALivE Project
Nano Micro Macro 2016: Selected Student Projects
Nano Micro Macro 2015: Selected Student Projects
ALivE Project
Nano Micro Macro 2015: Selected Student Projects
Nano Micro Macro 2014: Selected Student Projects
ALivE Project
Nano Micro Macro 2014: Selected Student Projects
Ceramic Morphologies
Cevisama
Ceramic
Ceramic Morphologies
Exploring Adaptivity
ALivE Project
Exploring Adaptivity
Interactive 3D Ceramic Printing: Sydney RobArch Workshop 2016
Ceramic, Design Robotics
Interactive 3D Ceramic Printing: Sydney RobArch Workshop 2016
Extruded Tessellation: Ceramic Tectonics
Cevisama
Ceramic
Extruded Tessellation: Ceramic Tectonics
ALivE Exhibition: Auxetic Surfaces
ALivE Project
ALivE Exhibition: Auxetic Surfaces
Ceramic Material Systems
Ceramic
Ceramic Material Systems
Protoceramics: Tile Tectonics
Cevisama
Ceramic
Protoceramics: Tile Tectonics
Ceramic Re:Visions: 2015 Cevisama
Ceramic
Ceramic Re:Visions: 2015 Cevisama
Protoceramics: Preview Cevisama 2015
Ceramic
Protoceramics: Preview Cevisama 2015
Dynamic Daylight Control System
ALivE Project
Dynamic Daylight Control System
Ceramic Shell @ Cevisama 2014
Ceramic
Ceramic Shell @ Cevisama 2014
GSD student work on ceramics in WIRED
Ceramic
GSD student work on ceramics in WIRED
ALivE Exhibition @ Invivia
ALivE Project
ALivE Exhibition @ Invivia
DRG at the 2013 Milan MADE Expo
Ceramic
DRG at the 2013 Milan MADE Expo
Form|Rule|RuleForm
Design Robotics
Form|Rule|RuleForm
Robotic Casting | Toyohashi, Japan, 2013
Ceramic, Design Robotics
Robotic Casting | Toyohashi, Japan, 2013
(Re)Thinking the Brick
Ceramic
(Re)Thinking the Brick
Public Lectures CalPoly / LBNL
ALivE Project, Design Robotics
Robotic Casting | RobArch 2012
Design Robotics
Robotic Casting | RobArch 2012
Surfacing Stone
Design Robotics
Surfacing Stone
4th Wyss Institute retreat – DRG presentation
ALivE Project
4th Wyss Institute retreat – DRG presentation
DRG Life Cycle Design Exhibition at the GSD
DRG Life Cycle Design Exhibition at the GSD
ACADIA 2012 – DRG presentations
Design Robotics
Nathan King to speak at Penn State
Design Robotics
Nathan King to speak at Penn State
Sky Garden
Ceramic
Sky Garden
Tectonics Tessellation: Ceramic Structural Surfaces
Ceramic
Tectonics Tessellation: Ceramic Structural Surfaces
CeramicsLAB student work featured in MISC article
Ceramic
CeramicsLAB student work featured in MISC article
Flowing Matter
Ceramic
Flowing Matter
Adaptive Materials now called Adaptive Living Environments (ALivE)
ALivE Project
Adaptive Materials now called Adaptive Living Environments (ALivE)
Robot Motion Controller
Design Robotics
Robot Motion Controller
RoboKline
Design Robotics
RoboKline
Metal Sky
Design Robotics
Metal Sky
Flexible Tooling
Design Robotics
Flexible Tooling
SmartGeometry 2012: Ceramics 2.0
Ceramic, Design Robotics
SmartGeometry 2012: Ceramics 2.0
3-D Printing Ceramics
Ceramic, Design Robotics
3-D Printing Ceramics
Robotic Tile Placement
Ceramic, Design Robotics
Robotic Tile Placement
CNC Symposium, Norwich University
Design Robotics
Keynote at Qualicer Conference in Castellon, Spain.
Ceramic
Ceramic LAB students featured at Cevisama 2012
Ceramic
Ceramic LAB students featured at Cevisama 2012
Ceramic Futures featured at Cevisama 2012
Ceramic
Ceramic Futures featured at Cevisama 2012
Ceramic LAB students featured at Cevisama 2012
Ceramic
Ann Arbor Municipal Center Sculpture
Design Robotics