Tectonics Tessellation: Ceramic Structural Surfaces

Team: Matías Imbern, Felix Raspall, Qi Su

Structural surfaces are extremely efficient in the use of materials and have a unique expressive quality. However, complicated manufacturing involving expensive formworks, excessive waste and intensive hand-labor, became major limitation as labor costs increased, environmental issues became evident and craft skills diminished. Today, digital tools for design and fabrication challenge these limitations, taking advantage of the fast and precise study of complex-form structures and automation of construction and assembly. A related paper was presented at Acadia 2012. A related research project is the C-Shell, most recently presented at the 2014 Cevisama.

This research proposes a construction process for ceramic shells that reduces the requirements for formworks, on-site work, and waste production. This process involves a two-step fabrication including off-site panel manufacturing and on-site assembly. The construction system consists of two interlocking triangular pieces that provide compression resistance and a delicate inner surface finish, embedded in a thin reinforced concrete layer. The construction of panels, produced in a shop environment, follows this sequence: use of an adjustable and reusable formwork system to receive the triangular pieces, robotic placement of the pieces and casting of the first layer of reinforced concrete between the pieces. The panels are then delivered and placed on site, interlocked and connected with a second layer of concrete, continuous throughout the shell.

The research methodology included precedents study, design and prototyping of pieces and assembly sequence and a final full-scale prototype of two panels to test the panel connection. The results of this study shows the feasibility of this approach to shell fabrication and sets the ground for further development which will include structural analysis, concrete-casting automation and reusable formwork development.

MaP+S / ITE Research Pavillion: Structural Ceramics
Ceramic
MaP+S / ITE Research Pavillion: Structural Ceramics
Brick Geometries: 5-Axis Additive Manufacturing for Architecture
MArch | Thesis
Ceramic, Design Robotics
Brick Geometries: 5-Axis Additive Manufacturing for Architecture
Nano Micro Macro 2016: Selected Student Projects
ALivE Project
Nano Micro Macro 2016: Selected Student Projects
Nano Micro Macro 2015: Selected Student Projects
ALivE Project
Nano Micro Macro 2015: Selected Student Projects
Nano Micro Macro 2014: Selected Student Projects
ALivE Project
Nano Micro Macro 2014: Selected Student Projects
Ceramic Morphologies
Cevisama
Ceramic
Ceramic Morphologies
Exploring Adaptivity
ALivE Project
Exploring Adaptivity
Interactive 3D Ceramic Printing: Sydney RobArch Workshop 2016
Ceramic, Design Robotics
Interactive 3D Ceramic Printing: Sydney RobArch Workshop 2016
Extruded Tessellation: Ceramic Tectonics
Cevisama
Ceramic
Extruded Tessellation: Ceramic Tectonics
ALivE Exhibition: Auxetic Surfaces
ALivE Project
ALivE Exhibition: Auxetic Surfaces
Ceramic Material Systems
Ceramic
Ceramic Material Systems
Protoceramics: Tile Tectonics
Cevisama
Ceramic
Protoceramics: Tile Tectonics
Ceramic Re:Visions: 2015 Cevisama
Ceramic
Ceramic Re:Visions: 2015 Cevisama
Protoceramics: Preview Cevisama 2015
Ceramic
Protoceramics: Preview Cevisama 2015
Dynamic Daylight Control System
ALivE Project
Dynamic Daylight Control System
Ceramic Shell @ Cevisama 2014
Ceramic
Ceramic Shell @ Cevisama 2014
GSD student work on ceramics in WIRED
Ceramic
GSD student work on ceramics in WIRED
ALivE Exhibition @ Invivia
ALivE Project
ALivE Exhibition @ Invivia
DRG at the 2013 Milan MADE Expo
Ceramic
DRG at the 2013 Milan MADE Expo
Form|Rule|RuleForm
Design Robotics
Form|Rule|RuleForm
Robotic Casting | Toyohashi, Japan, 2013
Ceramic, Design Robotics
Robotic Casting | Toyohashi, Japan, 2013
(Re)Thinking the Brick
Ceramic
(Re)Thinking the Brick
Public Lectures CalPoly / LBNL
ALivE Project, Design Robotics
Robotic Casting | RobArch 2012
Design Robotics
Robotic Casting | RobArch 2012
Surfacing Stone
Design Robotics
Surfacing Stone
4th Wyss Institute retreat – DRG presentation
ALivE Project
4th Wyss Institute retreat – DRG presentation
DRG Life Cycle Design Exhibition at the GSD
DRG Life Cycle Design Exhibition at the GSD
ACADIA 2012 – DRG presentations
Design Robotics
Nathan King to speak at Penn State
Design Robotics
Nathan King to speak at Penn State
Sky Garden
Ceramic
Sky Garden
Tectonics Tessellation: Ceramic Structural Surfaces
Ceramic
Tectonics Tessellation: Ceramic Structural Surfaces
CeramicsLAB student work featured in MISC article
Ceramic
CeramicsLAB student work featured in MISC article
Flowing Matter
Ceramic
Flowing Matter
Adaptive Materials now called Adaptive Living Environments (ALivE)
ALivE Project
Adaptive Materials now called Adaptive Living Environments (ALivE)
Robot Motion Controller
Design Robotics
Robot Motion Controller
RoboKline
Design Robotics
RoboKline
Metal Sky
Design Robotics
Metal Sky
Flexible Tooling
Design Robotics
Flexible Tooling
SmartGeometry 2012: Ceramics 2.0
Ceramic, Design Robotics
SmartGeometry 2012: Ceramics 2.0
3-D Printing Ceramics
Ceramic, Design Robotics
3-D Printing Ceramics
Robotic Tile Placement
Ceramic, Design Robotics
Robotic Tile Placement
CNC Symposium, Norwich University
Design Robotics
Keynote at Qualicer Conference in Castellon, Spain.
Ceramic
Ceramic LAB students featured at Cevisama 2012
Ceramic
Ceramic LAB students featured at Cevisama 2012
Ceramic Futures featured at Cevisama 2012
Ceramic
Ceramic Futures featured at Cevisama 2012
Ceramic LAB students featured at Cevisama 2012
Ceramic
Ann Arbor Municipal Center Sculpture
Design Robotics