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ABSTRACT

This paper proposes the use of a new set of software tools, called Firefly, paired
with a low-cost five-axis robotic motion controller. This serves as a new means
for customized tool path creation, realtime evaluation of parametric designs using
forward kinematic robotic simulations, and direct output of the programming
language (RAPID code) used to control ABB industrial robots. Firefly bridges
the gap between Grasshopper, a visual programming editor that runs within the
Rhinoceros 3D CAD application, and physical programmable microcontrollers like
the Arduino; enabling realtime data flow between the digital and physical worlds.
The custom-made robotic motion controller is a portable digitizing arm designed
to have the same joint and axis configuration as the ABB-IRB 140 industrial robot,
enabling direct conversion of the digitized information into robotic movements.
Using this tangible controller and the underlying parametric interface, this
paper presents an improved workflow which directly addresses the shortfalls of
multifunctional robots and enables wider adoption of the tools by architects and
designers.
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1 Introduction

There are literally thousands of different applications currently performed by industrial
robots. With more than one million multifunctional robots in use worldwide, they have
become a standard in automation (Gramazio 2008). The reason for their widespread
use lies in their versatility; they have not been optimized for one single task, but can
perform a multiplicity of functions. Unlike other computer numerically controlled (CNC)
machines - which are task-specific - robots can execute both subtractive and additive
routines. Among other operations, they can load, unload, place, cut, bend, stack, spray,
weld, and mill.

However, industrial robots were not designed to be ‘user friendly’ — their size, support
infrastructure, and programming demands make them ill-suited for untrained operators.
They can also be dangerous. Industrial robots are often kept in isolated areas in order
to protect human workers. In fact, many robots are painted ‘security orange’ (RAL
color reference 2003 ) to “remind us that this complex piece of heavy machinery is not
particularly observant of misplaced hands or feet and requires caution when operating.”
(Edgar 2008). Lastly, the design-to-fabrication workflow for industrial robots has
traditionally been a slow and cumbersome process (see Section 3). Machine tooling,
kinematic simulations, and robotic movement programming often require intimate
knowledge of scripting and manufacturing processes, all of which limit the utilization of
such tools by the architect/designer.

Despite considerable advances in digital software used to control robots, there often
remains a detachment between the designer and the final output. Bringing physical
input and output closer together through purpose-built tools for fabrication can enable
many new creative opportunities for designers. Working from observations about the
way architects design, this paper presents a prototype for a 3D drawing tool that takes
realtime input and translates that into machine code for robotic fabrication. The purpose
of this paper is not to suggest that the proposed workflow is a ready-made solution
to replace existing fabrication process; rather the work should be seen as a proof
of concept that could enable wider use of digital fabrication tools by architects and
designers. Finally, the paper concludes with a look at the results and limitations of the
proposed system and outlines a number of considerations for future development.

2 Related Work

The fields of digital fabrication and Tangible User Interface (TUI) design have seen a
dramatic increase in activity in recent years. However, despite advancements made in
both fields, there have only been a handful of projects which bridge the gap to embody
direct physical input and output. John Frazer's Flexible Intelligent Modeling System is
a notable early example which was developed in the early 1980s as a response to the
existing CAD systems which at that time were clunky and cumbersome (Shaer 2010).
Frazer and his team developed a ‘38D modeling system’ where users built objects by
stacking up sensor embedded cubes or blocks into various configurations. The computer
then deduced location, orientation, and type of each component in the system and
output a 2D representation of the pattern to a plotter.

More recently, there have been a number of projects which have explored various gestural
interfaces as a form generator for digital fabrication. One notable example is the Sketch
Furniture system developed by Front Design which uses a professional motion-capture
system to create a new way to materialize free hand sketches (Front 2006). Designers
can create 3D digital geometry by drawing lines in physical space. This data is then
processed in the computer and converted into a mesh which can be fabricated at full
scale using a Selective Laser Sintering (SLS) process. In another example, the Spatial
Sketch application uses a stereo-vision 3D input system to capture gestural movements
which can be translated into a series of 2D profile curves to be output to a laser cutter
for final fabrication (Willis 2010). Finally, the Shaper prototype developed at Carnegie
Mellon University in 2010 uses touch-screen technology to interactively control a three-
axis CNC machine which deposits expanding polyurethane foam material according to
the user’s finger placement (Willis 2011). While these works offer unprecedented fluidity
between the design interface and final output, they often require a significant investment
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Figure 1. Existing design-to-fabrication workflow
for ABB industrial robots
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in time and equipment in order to be used effectively. Additionally, none of the projects
mentioned above have been designed specifically for use with multi-functional robots.
Making an inexpensive and intuitive gestural interface for robotic control became the
primary driver for many of the design decisions made during the development of this

project.
3 Existing Design-to-Robotic Fabrication Workflow

Despite significant progress made in CAM software over the last decade, the existing
design-to-fabrication workflow can be difficult to traverse for architects and designers.
In the traditional sense, design conception typically occurs as a 2D sketch which is
then converted into a 3D CAD model following one of two trajectories. The architect or
designer can build a 3D CAD model directly from the sketches; refining certain design
parameters as the idea becomes more fully developed. Or, an alternative is to create
a physical model from which a 3D model can be captured through some form of 3D
scanning equipment such as a digitizing arm. A digitizing arm is a device which has
several degrees of freedom and uses sensors to measure the angle of each joint. From
this data, the location (or coordinate) of the tool tip can be calculated. A designer can
trace physical objects by moving the tool tip along the surface of an object to return a
string of point coordinates which can be processed by a computer.

Once the digital model has been made, the architect or industrial designer must choose
a fabrication methodology from which they will execute their design (Figure 1). For
working with ABB robots, this means exporting the CAD model into a format (.iges, .stl,
.3ds) that can be understood by the various ABB supported software applications such

as MasterCAM with the Robot Master plug-in or the stand alone program Robot Studio.

While these applications offer sophisticated algorithms for tool path creation, collision
detection, and singularity analysis; they are often only employed by trained operators
as they require a level of manufacturing education and scripting knowledge that
architects and designers typically do not have. This type of workflow introduces a level
of detachment in the design process. The CAM operator, an intermediary between the
designed input and final physical output, must make decisions based on prior experience
in order to make the design a reality. However, if errors are found in the fabrication
methodology — either from inaccuracies discovered in the CAD model or from simulation
feedback - the design must be modified and the entire process begun anew. This can
significantly increase production times and consequently the overall costs of the project.

4 The Tangible Controller

This paper presents a prototype for a tangible controller and a new parametric interface
specifically designed to streamline the robotic fabrication process for architects and
designers. The low-cost custom-made digitizing arm was constructed using the same
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Fig. 2

joint and axis configuration as the ABB-IRB 140 industrial robot; enabling direct
conversion of the digitized information into robotic movements (Figure 2).

A degree of freedom (DOF) is a geometric definition of freedom of movement either
along an axis in space or rotation about an axis in space (Pottman 2007). The digitizing
arm has five joints or pivot points — each corresponding to one DOF on the ABB
robot. Each joint on the digitizing arm uses a high precision potentiometer to measure
the angular rotation about each axis. Rotary potentiometers work by changing their
resistance as the central shaft is turned to the left or right. This changes the voltage
which is read by the analog-to-digital converter on the microcontroller — returning a
sensor value between 0 and 1023. These particular potentiometers were able to rotate
up to 340°, so the angular position (in radians) was determined using the following

equation:
Angle = (PotVal * (1028/340)) * (11/180)

In addition to the five analog sensors (potentiometers), the digitizing arm is equipped
with a tool tip circuit board with two push button controls. These allow the user to
easily record or reset the digitized information on the fly (Figure 3). All of these inputs
are connected to a custom designed circuit board which processes the information

and sends a formatted string of information over the serial port to the virtual interface.
5 The Parametric Interface

The development of a new parametric interface was vital to enable wider adoption of
robotic fabrication techniques by architects and designers. The following sections

highlight some of the features of the proposed system.
5.1 GRASSHOPPER AND FIREFLY

Over the last 15 years, there has been a migration in design practices toward the
utilization of parametric modeling. The term refers to a method of digitally modeling a
series of design variants whose relationships to each other are defined through one or
several parameters which then form a parametric space which may comprise dozens
or thousands of related but distinct forms (Lagios 2010). Even though parametric
modeling began as a means to develop new animation techniques in the gaming/film
industries in the mid 1990s, there has been a confluence of disciplines in recent years
who have embraced this type of design methodology primarily due to its ability to

create designs that can quickly be adapted or modified.
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Figure 2. The digitizing arm was designed to
have the same joint and axis configuration as the
ABB-IRB 140 robot

Figure 3. Two custom circuit boards were
designed to stream the sensor information
from the digitizing arm into the 3D parametric
environment

165



Figure 4. A portion of the Grasshopper definition:

1) Read sensor values via Firefly 2) Tool definition
3) Custom VB.NET component 4) Final RAPID
code output
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One recent example is Grasshopper™ - a visual programming language developed by
David Rutten at Robert McNeel & Associates which pro-vides an intuitive parametric
interface to the Rhino CAD application. In Grasshopper, programs are created by dragging
components onto the editor (called the canvas). The outputs to these components are
then connected to the inputs of subsequent components — creating an acyclic graph
of information flow (Figure 4). Grasshopper enables a way for designers to look at
design problems as a set of sophisticated relationships and to map those relationships
graphically and programmatically into a system that allows them to interactively play with
alternatives (Day 2009).

As a generative modeling tool Grasshopper offers unprecedented capabilities, but by
default, it lacks the ability to communicate with hardware devices such as programmable
microcontrollers or other haptic interfaces. Firefly is a set of tools which bridge the gap
between digital and physical worlds by enabling direct serial communication between
hardware devices and the Grasshopper plug-in. Firefly allows realtime access to each
of the sensors mounted on the digitizing arm; forming the parametric basis for the
kinematic robotic simulation.

5.2 ROBOTIC SIMULATION

Kinematic simulation of industrial robots has become an important means for the
increased efficacy of robotic fabrication. Kinematics pertains to the motion of bodies
in a robotic mechanism without regard to the forces/torques that cause that motion
(Siciliano 2008). Since most CAM simulation tools start with the input of one or more
target points (or goal objects), they often employ an inverse kinematic solution — or
the process of determining all of the joint angles and configurations in order to reach
a desired position. The reverse procedure is called forward kinematics. If given all of
the relative angles of each joint and the lengths of each leg; the tool tip (also known as
the end effector) can be found by performing a series of matrix transformations on each
body in the robotic mechanism. A custom-made VB.NET script inside Grasshopper
uses each of the potentiometer values from the digitizing arm to create a forward
kinematic simulation of the ABB robot. As the user moves the digitizing space — tracing
physical objects or creating their own custom tool paths — they can see an immediate
simulation of the robot performing the same actions (Figure 5). One of the push buttons
located on the tip of the digitizing arm allows users to record the tool path information
which is directly translated into RAPID code - the programming language used by all
ABB robots. The other push button resets or clears the recorded data.

5.3 ROBOTIC PROGRAMMING

A critical aspect of the proposed workflow was to be able to output the robotic
programming codes in order to quickly test the recorded movement patterns on the
larger industrial robot. RAPID is the high-level programming language used to
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control all ABB robots and entire books have been written about how to generate
your own custom programs. This section does not attempt to replicate the existing
literature; rather serves to outline a few of the features which were implemented in
this project.

Like other computer controlled machines, robots require a set of instructions
in order to make them run properly. While there are many different data types,
operators, and functions that can be included in a set of codes; there exists two
main declarations to every program: 1) a statement that defines one or more target
points (called robtargets) to accurately locate the end effector in space and 2) a set
of movement commands that tell the robot how to move to those positions. Each
composite data type requires their own set of parameters, or arguments - as seen
in Figures 6 and 7. All of these definitions were created on the fly as the digitizing
arm was controlled by the user.

A robtarget is a composite data type composed from a predefined number of values.
Each robtarget is defined by its name, absolute position as XYZ coordinates,
rotation or orientation of the robot as four quaternion values, joint configurations for
axis# 1, 4, 6, and cfx, and finally any extra external axis configurations (Figure 6).

Each robtarget is given a unique identification each time the solution is recomputed.
The position information can be calculated by performing the matrix transformations
on all of the joints to determine the location of the tool tip in space. Quaternions
provide a convenient mathematical notation for representing the orientation and
rotation of objects in three dimensions. Space would not permit the full derivation
of the quaternion math used in this project, but if given the roll = ¢, pitch = 6, and
yaw = g of the tool tip; then the four quaternion values can be found using the
following equations.

q0 = cos(@/2)*cos(B8/2)*cos(P/2)+sin(@/2)*sin(6/2)*sin(W/2)
gl = sin(@/2)*cos(8/2)*cos(b/2)-cos(®/2)*sin(0/2)*sin(P/2)
g2 = cos(p/2)*sin(8/2)*cos(y/2)+sin(p/2)*cos(68/2)*sin(Y/2)
g3 = cos(p/2)*cos(6/2)*sin(Y/2)-sin(p/2)*sin(B8/2)*cos(Y/2)

The configuration data is used to identify the current quadrant of the robot axis for
joints 1, 4, and 6. The last configuration number is used to select one of eight
predefined robot configurations. Lastly, any external axis configurations can be
supplied to locate the position of any external axis. The value 9E9 is defined for

axes which are not connected.

Movement instructions tell the robot how to move from its current location to a
specified robtarget (Figure 7). Provided with six or more DOF, the robot can move
in any number of ways and the first argument in the move command specifies the
type of desired movement. In this example, the robot will attempt to move linearly
to the next robtarget. The velocity of the end effector is measured in mm/s and can
be determined by taking the distance from the current tool location to its previous
position and dividing it by the time interval between recordings.
describes the position accuracy, while the tool and work objects to be used are
defined elsewhere in the program.

The zone data

6 Results

As of this writing, there have only been a limited number of tests that have been
conducted using the five-axis robotic motion controller. However, the initial results
suggest that the proposed direct-to-fabrication process could prove to be a viable
alternative to existing robotic workflows. Because the digitizing arm was designed
to have the same proportions and axis configuration as the larger industrial robot,
it provides an intuitive interface for working with the robot. Designers immediately
understand that the movements they record using the digitizing arm will be
immediately translated into robotic movements, while the realtime visual feedback
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Figure 5. The interface provides a fast and intuitive
way to create custom tool paths or to simulate
robotic manufacturing processes

Figure 6. Definition of a robot target

Figure 7. Definition of a movement command
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Fig. 8

Figure 8. Various end effectors can be purchased
from robotic suppliers or you can make your own
such as this spring loaded pen attachment
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from the simulation further reinforces this fact. Given that robots can support any
number of off-the-shelf or custom-made end effectors, the potential applications
are limitless (Figure 8).

There were a number of factors in the design of the controller which contributed
to the fidelity of the final robotic output and the results from these tests helped to
identify areas of improvement. The decision to use high precision potentiometers,
as opposed to the more accurate method of optical encoding, proved to be the
primary limiting factor in the resolution of the final output. The choice was made
based on costs, as potentiometers are considerably cheaper than optical encoders
and the premise of the project was to provide a reliable low-cost tangible solution
to robotic fabrication. However, if costs were not a factor, the fidelity of the project
could be greatly enhanced by using more accurate sensors for the joint angles.

Secondly, the design of the physical prototype was a first pass at the design of
a sturdy five-axis digitizing arm. During design development, some mechanical
aspects of the design were discovered which could be improved upon in future
iterations. Oiled bronze bearings were used for each joint on the digitizing arm, but
the connection detail for joint 4, or the wrist, deteriorated to a small degree over time
and became a potential source of error in the system. Likewise, the stabilization
springs located on the top and back of the digitizing arm added too much tension
to the system; making it somewhat difficult to move the arm into various positions.
While they did provide the appropriate amount of force to leave the arm in a 90°
resting position without falling over, perhaps an offset counterweight would be a
more elegant solution.

7 Conclusion

This paper presents a new tangible controller and optimized workflow for robotic
fabrication. Although there has been considerable progress made in the digital
tools used to control robots, there is an identifiable problem in the existing design-
to-fabrication process. The physical articulation of embodied input and output
through purpose-built tools for fabrication can allow for wider adoption and new
creative opportunities by architects and designers. In turn, this will help re-
establish the relationship between designers and the physical fabrication process.
The proposed system allows for a fast and intuitive way to create custom tool
paths, simulate robotic kinematics, and production of RAPID code for controlling an
ABB-IRB 140 industrial robot.
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